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Abstract – As electric vehicles (EVs) become more widespread, the 

need for controlled charging technology to mitigate negative 

impacts on the electricity system becomes increasingly important. 

This paper explores the potential of controlled EV charging to 

offer flexibility to the Swiss electrical system by employing a 

hybrid modeling approach. We utilize a Bass-diffusion model to 

predict EV market penetration in Switzerland and a binary 

logistic regression model to associate representative driving 

profiles with the anticipated EV fleet. The contribution of 

controlled EV charging to the Swiss electrical supply is then 

investigated using quadratic mixed integer programming. The 

results show that controlled EV charging and vehicle-to-grid 

(V2G) can significantly minimize residual load fluctuations, 

reducing load peaks by approximately 5% in 2025 and 11% in 

2030. 

Index Terms – Electric vehicles, Vehicle-to-Grid, Controlled 

charging, Load smoothing, Bass-diffusion model 

INTRODUCTION 

The Swiss Federal Council predicts that final energy 

consumption will decrease by 2050 due to efficiency gains, 

particularly in the transport sector where highly efficient EVs 

are projected to decrease final energy use by 40% in 2050 

compared to 2019 [1]. However, the widespread adoption of 

EVs combined with the electrification of heating and industrial 

applications will increase electricity consumption in such a 

scenario. Furthermore, the capacity for electricity imports 

could be restricted from 2025 onwards due to the failed 

negotiations about an electricity market agreement between 

Switzerland and the EU [2]. Without an outline for such an 

agreement, the future integration of Switzerland into the 

European energy market is currently uncertain. 

Moreover, Switzerland is undergoing significant changes in 

electricity generation as the country gradually phases out 

nuclear power and shifts to renewable energy sources 

(RES) [3]. While hydroelectric generation has traditionally 

supplied most of Switzerland's electricity, due to climate 

change, less precipitation will be stored as snowpack in the 

mountains, and hence the seasonal production of hydroelectric 

generation will likely shift in the future [4]. Therefore, the 

domestic electricity generation from additional RES sources is 

planned to be gradually increased, with photovoltaics showing 

particular potential [5]. However, due to the high volatility of 

RES generation, integrating them on a large scale into the 

electricity system requires additional flexibility options. 

Despite increasing electricity demand, electric mobility has the 

potential to offer substantial flexibility for the electricity 

system by controlling the charging process. When EVs are 

integrated into the electricity grid as storage assets, whereby 

charging and discharging flows are bidirectional, it is often 

referred to as Vehicle-to-Grid (V2G). Numerous papers have 

examined the impacts of V2G. For instance, authors in [6 - 8] 

investigated the revenue potential of V2G, while researchers in 

[9, 10] adopted a system perspective to analyze the load-

smoothing potential of V2G technology. However, only a 

limited number of studies have specifically addressed V2G 

within the Swiss context. The authors in [11] modeled the 

interplay of V2G with other storage technologies in 

Switzerland. More recently, [12] explored various electricity 

market effects of V2G in Switzerland by extending a large-

scale energy system model. Neverteless,  these studies take a 

more generalized approach to modeling the EV fleet and do 

not incorporate adopter behavior as detailed when estimating 

the load-shifting potential of EVs. 

Hence, this paper introduces a methodology that assesses the 

flexibility potential of EVs in Switzerland based on 

representative mobility data that reflects user behavior. More 

precisely, our approach maps representative mobility data onto 

projected EV fleets, which then serve as input for a load-

smoothing optimization model to assess the load smoothing 

potential of V2G technology in Switzerland. The paper is 

structured as follows: First, we introduce the developed 

methodology, which consists of three interconnected sub-

models. Next, we present the results and discuss our findings, 

highlighting key insights. Lastly, we draw conclusions from 

our investigation. 

METHODOLOGY 

The developed methodology comprises a Bass-diffusion 

model, a binary logistic regression model, and a quadratic 

mixed integer optimization model. We present these 

submodels in the following more detailed. 
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A. Bass-diffusion model 

Following the approach in [13], we employed a Bass-diffusion 

model to analyze EV diffusion in Switzerland. This  model is 

widely used for estimating new product adoption in emerging 

markets. Equation (1) represents the cumulative adoptions up 

to time �, with innovation coefficient � and imitation 

coefficient � generating diffusion values. The market potential 

is denoted by m, and � indicates the specific year. The model 

predicts future fleet sizes annually since the start year t0, where � − t0 = 0. 

 

���� = � 1 − �����������
1 + �� ����������� (1) 

To estimate the values of p and q of the model adoption, a non-

linear least square algorithm was applied to historical data on 

EV sales [14] and future governmental targets [15]. Based on 

our analysis, we developed and modeled three different EV 

ramp-up scenarios. The base-case scenario has been derived 

from the Swiss government’s target of achieving a 50 % EV 

market share by 2025. In addition, we developed an optimistic 

and a pessimistic scenario, which varied the targeted EV 

market share in 2025 by +/- 15 percentage points. The model 

parameters for the different scenarios can be found in table 1.  
 

Table 1: Estimated Parameters of Bass-diffusion model 

Scenarios p q Std. Dev. p Std. Dev. q R2 

Optimistic  2.3E-05 0.506 5.3E-06 0.014 0.970 

Base-case  1.0E-04 0.396 3.3E-05 0.020 0.926 

Pessimistic  3.2E-04 0.301 1.4E-04 0.028 0.847 

 

B. Binary-logistic regression model 

To model the charging behavior of EV users, it is necessary to 

predict which car users will adopt EVs. Consequently, we 

employed a binary logistic regression model, building upon 

prior work [16], to predict EV adoption probabilities according 

to individual user characteristics. A Swiss e-mobility study 

identified age, income, and residence status as key factors 

affecting the purchase decisions of prospective EV adopters 

[17]. Utilizing these factors, we estimated the variables of a 

binary logistic regression model to determine the likelihood of 

EV adoption based on the specified user characteristics. 

Equations (2) and (3) present the estimated logistic regression 

model: 

���� = 1� =  11 +  �� (2) 

� =  −0.0311�� +  1.0916� +  0. 0.7273�#+  0.6725 (3) 

The dependent variable �� represents the probability to which a car user 5 would shift to an EV. �� represents the 

independent variable “age”, which has a negative coefficient, 

meaning that younger users are more likely to shift to an EV. �  depicts the residence status (0: tenant, 1: owner) which has 

a positive coefficient, meaning that owners are more likely to 

shift to EV. �# 3 represents the income (0: smaller than CHF 

7’000.-, 1: greater than CHF 7’000.-) and is positive as well, 

meaning that users with higher incomes are more likely to 

adopt electric mobility.  

We calculated the adoption probability for each mobility 

profile within a representative Swiss mobility survey [18]. This 

probability mapping allows the allocation of mobility profiles 

to the projected EV fleet, prioritizing trip profiles with higher 

adoption probabilities. Despite the dataset primarily consisting 

of conventional vehicle users, their behavioral patterns were 

assumed to remain unchanged upon transitioning to EVs. 

Utilizing the assigned mobility profile information, parking 

profiles for the EV fleet were derived by examining the arrival 

and departure times, as well as destinations, of Swiss 

motorists. With the assumption that parked EVs can charge at 

home or work with 11 kW and that users consistently plug in 

their vehicles upon arrival, aggregated load profiles for the 

Swiss EV fleet in the case of uncontrolled charging were 

generated. 

C. Load-smoothing optimization model 

To investigate the impact of controlled charging, a quadratic 

mixed integer optimization model, inspired by [9] and [19], 

was developed.  With this model, we investigate the load 

smoothing potential of unidirectional and bidirectional 

controlled charging strategies in Switzerland. The objective (4) 

of the developed model is to minimize the residual load 

fluctuations for every hour � ∈ ; of the analyzed day by 

dispatching the charging and discharging flows ��,�=>? of every 

grid-connected EV 5 ∈ �. The parameter ��@ABCDEFG  refers to 

the residual load in hour � ∈ ; and ��F@HA�  represents the 

average residual load in hour � ∈ ; without EVs during a day.  

The input data of the optimization model can be divided into 

two categories: data describing the vehicles and mobility 

patterns and data describing the state of the electricity system, 

including RES generation and demand. The former data was 

generated using the sub-models presented earlier. The latter 

data were obtained from time series data in the TYNDP22 

National Trends scenario [20]. Thereby, the residual load was 

calculated by subtracting the RES generation from the 

electricity demand. The RES generation was forecasted by 

scaling historical data for Switzerland's PV, wind, and run-of-

river production from 2021 to expansion targets for 2025 and 

2030. The demand time series were corrected by subtracting 

the average daily electricity demand of the EV fleet demand to 

avoid EV demand duplication. Thereby, the electricity demand 

was calculated assuming a consumption of 21 kWh/100km and 

a daily driving distance of 23.9 km. Imports have not been 

included in the residual load calculation to reflect the possible 

future restrictions resulting from a failed electricity market 

agreement. 

 

min J KJL��,�=>?M +  ��@ABCDEFG − ��F@HA�
�∈N

O
 

�∈P
 (4) 
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J ��,�=>?
�∈P

 ;�,�,Q�GEH,Q = R�,QDASF�D  ∀5, � (5) 

UV�,� = UVW,� − R�,�XY�BESAD + L��,�=>? ∗ ;���GEHM  ∀�, 5 [\�ℎ � = 0 
(6) 

UV�,� = UV��,� − R�,�XY�BESAD + L��,�=>? ∗ ;�,��GEHM  ∀�, 5 [\�ℎ � ≠ 0 
(7) 

UV�,� = UV�SFQ  ∀5, � [\�ℎ � =  ��,_DA�F@�E@A
 (8) 

0 ≤ UV�,� ≤ UV�SFQ  ∀�, 5 (9) 

−11 ≤ ��,�=>? ≤ 11 ∀� [\�ℎ ��? a = 1  (10) 

0 ≤ ��,�=>? ≤ 11 \b ��? a = 0 ∀5, � (11) 

��? a ∈ c0,1d (12) 

Equation (5) ensures that the electricity demand R�,QDASF�D 

required for charging the battery is satisfied for each charging 

event � and vehicle 5. Hereby, the parameter ;�,�,Q�GEH,Q
 refers to 

the time vehicle 5 is plugged in at home or at work during 

charging event � and hour �. The constraints in (6) and (7) track 

the charging level UV�,� of the battery for each vehicle 5 and 

hour � by subtracting the consumed energy R�,�XY�BESAD  during 

hour � as well as the charged or discharged energy ��,�>?. It is 

assumed that the EVs are charged to UVW,� at hour � = 0. 

Equation (8) ensures that the battery is fully charged at the hour 

of the first departure ��,_�DA�F@�E@A
 and after the last charging 

event of the previous day e − 1. Equation (9) ensures that the 

charging level stays within the bounds of zero and the maximal 

battery capacity UV�SFQ . Equations (10) and (11) limit the 

charging and discharging power ��f,�=>? to +/- 11 kW if an EV is 

V2G capable (��? a = 1) and to + 11 kW otherwise (��? a =0). Finally, (12) defines the binary variable ��? a, indicating 

whether a vehicle is bidirectional capable or not.  

RESULTS  

In recent years, the adoption of EVs has been on the rise in 

Switzerland, with an outlook of further increase in the future. 

According to the results of the developed diffusion model, 

between 461,000 and 707,000 EVs are expected to be on Swiss 

roads by 2025, increasing to between 1,372,000 and 2,068,000 

by 2030. Although the current diffusion of EVs is in its initial 

stages, the model predicts that the adoption rate will accelerate. 

Depending on the scenario, it is estimated that the whole Swiss 

car fleet of 4.6 million vehicles will be replaced by 2042 

(optimistic scenario), by 2046 (base case scenario), or by 2050 

(pessimistic scenario). The resulting forecasted yearly EV fleet 

sizes can be found in Figure 1. 

The aggregated battery capacity of the EV fleet was 

determined by assigning representative trip profiles and 

vehicle classes to the Swiss EV fleet. The aggregated battery 

capacity of the Swiss EV fleet is forecasted to range from 26 

GWh to 40 GWh in 2025, and between 78 GWh and 118 GWh 

in 2030, depending on the scenarios considered. In  

 
Figure 1: Diffusion of EVs in Switzerland 

comparison, the total existing hydro storage capacity in 

Switzerland summates to 8,880 GWh [21].  

Thus, without accounting for any potential advancements in 

battery capacities, it is estimated that EVs could provide a 

storage capacity equivalent to 1.3 % of today’s total hydro 

storage capacity in Switzerland using the optimistic scenario 

for 2030. 

Figure 2 depicts the parking profile for an average workday of 

the Swiss EV fleet in the year 2025. Since parking profiles 

exhibit minimal variation across different years, no additional 

parking profiles are presented. The results show that a majority 

of the EV fleet, approximately 95 %, is parked throughout the 

day. However, during typical commuting hours from 7 am to 

8 am and 5 pm to 6 pm, the share of parked vehicles drops to 

around 85 %. The profiles show that EV users tend to park their 

vehicles at home and work for the majority of the day, 

indicating potential opportunities for load-shift applications.  

 

 
Figure 2: Parking profile of Swiss EV fleet for an average work day in 2025 

Figure 3 shows the derived charging profiles in the case of 

uncontrolled charging EVs. Considering the very similar 

driving pattern of the EV users in 2025 and 2030, the shape of 

the load profile for every scenario of the EV fleet in 2025 and 

2030 is similar, differing only in the order of magnitude of the  

load. The charging profiles have two load peaks that 

correspond with typical commuting times in the morning and  



 

 

evening. The total load of the morning peak reaches between 

400 MW and 600 MW in 2025 and between 1,200 MW and 

1,700 MW in 2030. The larger evening peaks reach between 

600 MW and 1,000 MW in 2025 and between 1,750 MW and 

2,450 MW in 2030. To put it into perspective, the grid load 

reaches a maximum of 6,600 MW considering a low-demand 

summer day and 13,400 MW for a winter day with high 

electricity demand [20].   

 
Table 2: Electricity charged in MWh totally, directly, and flexibly charged 

per day 

 

The energy demand of the EV fleet in case of uncontrolled 

charging can be estimated by integrating the load curve over 

time. Specifically, the area under the load curve represents the 

amount of energy used by EVs for charging. For the 2025 EV-

fleet scenarios, the total energy charged during the day ranges 

from 4.1 GWh to 6.5 GWh, while for the 2030 scenarios, the 

energy charged ranges from 12.6 GWh to 18.5 GWh. In light 

of the projected electricity consumption in Switzerland of 

approximately 239.3 GWh per day in 2025 according to 

evaluations based on [20], the EV fleet's daily consumption 

represents approximately 3% of the total electricity demand. In 

the optimistic EV-fleet scenario for 2030, this percentage 

increases to 7% of the total daily electricity demand. Previous 

research by the authors in [22] demonstrated that electric 

vehicle (EV) drivers in Germany require a minimum range of 

approximately 120 km before being willing to participate in 

load-shifting. By incorporating these range requirements into 

our analysis, we found that between 92% and 94% of the 

energy charged can be considered flexible and utilized for 

load-shifting purposes. Table 2 displays the total energy 

charged, along with the corresponding subtotals of energy that 

must be charged directly to fulfill range requirements and the 

energy that can be charged flexibly.  

The developed quadratic optimization model has been used to 

investigate the possibility of smoothing residual load by 

dispatching EV charging processes in a manner that minimizes 

fluctuations in the residual load for 2025 and 2030. We applied 

the optimization model for a working day in the winter months, 

which features a high residual load caused by low electricity 

supply from RES (cold dark lull) coupled with high electricity 

demand. In addition, we investigated various fleet 

compositions, where the share of bidirectional vehicles was up  

to 20% of the total EV fleet, while the remainder of the fleet 

used unidirectional charging control. The load curves resulting 

from the base-case scenario for the analyzed years and fleet 

compositions are displayed in Figure 3, while the other 

scenarios can be found in the Appendix. The plots also feature 

load curves for an uncontrolled charging EV fleet, providing a 

reference for the improvements achieved through the 

optimized controlled charging EV fleet. 

The results show that uncontrolled EV charging amplifies the 

residual load peaks observed on the investigated winter day, as 

the load peaks generated from uncontrolled EV charging 

overlap with the residual load peaks caused by other 

consumers. Specifically, in 2025, the morning and evening 

peaks increase by 300 MW and 200 MW respectively. In 2030, 

with a larger EV fleet, the morning and evening peaks rise 

between 700 MW and 900 MW for the base-case scenario.  

The implementation of unidirectional controlled charging for 

EVs leads to a slight increase of the residual load peaks in the 

evening of approximately 100 MW in 2025 and 250 MW in 

2030. This is due to the charging process being shifted to times  

when the residual load is below the target load. Notably, the 

load smoothing potential increases significantly when 

 

 2030 

 Direct Flexible Total Direct Flexible 

Optimist 6457 448 6009 18426 1185 17241 

Base-case 5203 370 4388 15703 1004 14699 

Pessimist 4111 289 3822 12575 802 11773 

Figure 3: Charging profiles in case of an uncontrolled charging EV fleet 



 

 

considering unidirectional controlled charging with a larger 

EV fleet in 2030. This can be attributed to the larger amount of 

charging energy, that can be shifted in order to smooth the 

residual load. 

When 10 % and 20 % bidirectional EVs in the fleet are 

considered, the results reveal a reduction in peak residual loads 

and an improvement in smoothing behavior. Specifically, 

incorporating 20 % bidirectional EV, the reduction of the 

evening peak ranges between 550 MW and 850 MW in 2025 

and between 1,350 MW and 1,500 MW in 2030. In 

comparison, today’s largest Swiss pumped storage power plant 

Linth-Limmern has an installed power of 1,520 MW. The 

required power from controllable power plants or imports to 

cover the residual load during the evening peak could be 

reduced by 4.7 % to 7.3 % in 2025 and by 10.9 % to 11.6 % in 

2030 when 20% bidirectional EVs are incorporated. 

Some limitations of the results and future work directions are 

discussed here. The Bass-diffusion model used does not take 

into account potential policy changes that might moderately 

impact EV adoption. Furthermore, the developed binary 

logistic regression model includes only three factors, which 

somewhat limits its explanatory power. Prior studies, such as 

those by [16] and [23], have considered factors like technology 

affinity, green party preferences, and car usage frequency to 

improve accuracy. However, these variables were not 

incorporated in the datasets employed in this paper. 

Regarding controlled charging, we assume that all EVs 

participate in load-smoothing-oriented controlled charging. In 

practice, not all vehicles may have the necessary hardware 

(e.g., suitable wallbox), and EVs could be used in other 

scenarios, such as vehicle-to-home, where charging patterns 

align with household electricity consumption and RES 

generation. As a result, slightly higher shares of bidirectional 

vehicles might be needed to achieve the results of this analysis 

in real-world settings. For future work, the assumptions made 

in this study about the share of vehicles participating in 

controlled charging and plug-in probability could be 

reconsidered.  

CONCLUSION 

This analysis provides insights into the potential of EVs to 

provide flexibility in Switzerland's future electricity system. 

Specifically, the analysis has disclosed that with many EVs 

being parked most of the day, most of the charging processes 

can be shifted in time without limiting the user in their range 

requirements. Moreover, the importance of controlled 

charging systems was emphasized, as uncontrolled charging 

can exacerbate peak loads during typical morning and evening 

peak hours. The research indicates that, if EVs charge 

uncontrolled, peak loads increase by approximately one 

Gigawatt per 700,000 EVs, representing a significant burden 

for the electricity system. 

As EV fleets have a high installed charging power but 

comparatively low aggregated storage capacity, EVs are well 

suited for short-term storage and less suited for seasonal 

storage applications. The application of the developed 

optimization model demonstrated the considerable load 

leveling potential of both unidirectional controlled charging 

and V2G technologies. Bidirectional charging, as seen in V2G, 

provides greater flexibility potential to an EV fleet compared 

to unidirectional controlled charging alone. However, as the 

size of the EV fleet increases, most of the load leveling can 

already be achieved by shifting unidirectional charging 

processes to off-peak hours, and the additional flexibility from 

V2G may not be fully utilized. Thus, it might not be necessary 

to equip the entire future EV fleet with V2G technology. In this 

case study, a maximum fleet share of 20% bidirectional 

vehicles was sufficient to smooth the load to a nearly static 

level.  

Figure 4: Impact of uncontrolled- and controlled charging on the residual load 
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APPENDIX

 

Table A-1: Evening residual load peak reduction with controlled charging and 

V2G 

 

Table A-2: Morning residual load peak reduction with controlled charging and 

V2G 

 

 

 

 

 

 

 

 

 

 

 2025, 10% BD 2030, 10% BD 

[MW] 
Tot. 

Red. 

Red. 

UD 

Red. 

BD 

Tot. 

Red. 

Red. 

UC 
Red. BD 

Optimistic 500 350 150 500 500 0 

Base-case 450 300 150 550 550 0 

Pessimistic 400 200 200 600 650 50 

 2025, 20% BD 2030, 20% BD 

[MW] 
Tot. 

Red. 

Red. 

UD 

Red. 

BD 

Tot. 

Red. 

Red. 

UC 
Red. BD 

Optimistic 550 350 200 600 500 100 

Base-case 500 300 200 600 550 50 

Pessimistic 450 200 250 600 650 50 

 2025, 10% BD 2030, 10% BD 

[MW] 
Tot. 

Red. 

Red. 

UD 

Red. 

BD 

Tot. 

Red. 

Red. 

UC 
Red. BD 

Optimistic 550 200 350 1,350 750 600 

Base-case 500 150 350 1,300 650 650 

Pessimistic 350 100 150 1,200 500 700 

 2025, 20% BD 2030, 20% BD 

[MW] 
Tot. 

Red. 

Red. 

UD 

Red. 

BD 

Tot. 

Red. 

Red. 

UC 
Red. BD 

Optimistic 850 100 750 1,500 850 650 

Base-case 700 75 625 1,450 750 700 

Pessimistic 550 50 500 1,350 550 800 

Figure A-1: Impact of uncontrolled- and controlled charging on the residual load, pessimistic scenario 



 

 

 

 

Figure A-2: Impact of uncontrolled- and controlled charging on the residual load, optimistic scenario 


